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Abstract: Motivated by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, the objective
of integration of important biomarkers for the early detection of Mild Cognitive Impairment (MCI)
to Alzheimer’s disease (AD) as a therapeutic intervention is most likely to be beneficial in the early
stages of disease progression. Developing predictors for MCI to AD comes down to genotype
variables such that the dimension of predictors increases as the sample becomes large. Thus, we
consider the sparsity concept of coefficients in a high-dimensional regression model with clustered
failure time data such as ADNI, which enables enhancing predictive performances and facilitates
the model’s interpretability. In this study, we propose two MM algorithms (profile and non-profile)
for the shared frailty survival model firstly and then extend the two proposed MM algorithms to
regularized estimation in sparse high-dimensional regression model. The convergence properties of
our proposed estimators are also established. Furthermore simulation studies and analysis of ADNI
data are illustrated by our proposed methods.

Keywords: clustering; frailty model; sparsity; MM algorithm; ADNI

1. Introduction

In biomedical research, we often encounter clustered failure time data in which indi-
viduals from the same cluster (e.g., family) share common genetic and/or environmental
factors. An illustrative example comes from the Alzheimer’s Disease Neuroimaging Initia-
tive study where each participant may develop Mild Cognitive Impairment (MCI) and/or
develop Alzheimer’s disease (AD). The times to these two events for each individual are
expected to be highly associated.

In order to account for the correlation of associated failure times, shared frailty or
random effect models are commonly used by researchers ([1–4]). In particular, the gamma
frailty model ([5–8]) is numerically convenient for such analysis since the likelihood func-
tion exhibits a closed form. For example, ref. [2] proposed a frailty model where individuals
within the same cluster share a common random effect. Ref. [9–11] provided a good and
comprehensive review of the applications of different frailty models for clustered survival
data. The authors of [12] compared several commonly used methods and demonstrated
the advantages of the gamma frailty model. Ref. [13,14] also explored the nonparametric
frailty model and the between-within frailty model for correlated survival data.

For high-dimension regression analysis, an important and useful strategy is to exploit
sparsity and assume that the true parameters lie in a low-dimensional subspace. In the
past years, sparsity-restricted estimation has attracted a great deal of attention in high-
dimensional regression models. That is, only a few regression coefficients are assumed
to be nonzero ([15,16]). In addition to the widely used LASSO penalty, there exists other
types of regularization methods such as ridge regression ([17]), bridge regression ([18]), and
elastic net ([19]). In order to improve the performance of the LASSO, many modifications
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such as the adaptive Lasso, the smoothly clipped absolute deviation (SCAD, [20]), and
minimax concave penalty (MCP, [21]) have also been proposed.

In this paper, we develop fast and efficient algorithms for regularized estimation in the
general frailty model for clustered failure time data. As the model parameters consists of
both the regression coefficients and the unknown nonparametric baseline hazard function,
computation in the frailty model with survival data is usually intensive, especially when
frailty does not result in a closed-form likelihood function. The regularized estimation
poses even more challenges for the problem and further complicates computational burden.
The existing approaches of general frailty model almost rely on the EM algorithm. The
EM algorithm adopts Newton’s method in its maximization step, which involves matrix
inversion and may not have good performance in a high-dimensional environment. The
minorization-maximization (MM) algorithm possesses an ascent property, which driving
the target likelihood function to increase and reliably converges to the maximum from
well-chosen initial values ([22–24]). In particular, ref. [25] proposed three different MM
algorithms for the gamma frailty model and further demonstrated their utility for the
estimation in high-dimensional situations via decomposing a high-dimensional objective
function into separable low-dimensional functions. In this paper, we first develop a pair
of MM algorithms, including profile and non-profile, for the general frailty model. As
demonstrated by [25] in numerical studies, the decomposition inosculated with regularized
estimation well in sparse high-dimensional settings. For illustration, we chose to use
concave penalties such as the smoothly clipped absolute deviations penalty (SCAD, [20])
and the minimax concave penalty (MCP, [21]) to explore the sparsity because they both
possess the good property of unbiasedness.

The rest of the paper is organized as follows. In Section 2, we provide the model
description, an overview of MM principle, and then propose a pair of MM algorithms.
In Section 3, we derive regularized estimation methods via profile and non-profile MM
algorithms in sparse high-dimensional regression setting. The convergence properties of
the proposed algorithms are provided in Section 4. In Section 5, a series of simulation
studies was conducted to assess the finite-sample performances of the proposed methods.
Section 6 provides a real application to the ADNI data.

2. The Model and Estimation
2.1. The Model

Consider datasets from some population that contains Mi > 1 individuals in i-th
subgroup of the population, i = 1, . . . , B. Individuals within the i-th subgroup have
dependent event times due to some unobserved covariate information summarized in a
frailty, ωi. Let Yij be the event time, let Cij be the censoring time, and let X>ij = (Xij1, . . . , Xijp)
denote the potential covariates for the j-th individual in the i-th subgroup. The censoring
time Cij is assumed to be independent of Yij, given covarites Xij and frailty ωi. Define
tij = min(Yij, Cij) and δij = I(Yij 6 Cij), where I(·) denotes the indicator function. Suppose
that censorship is noninformative. Conditional on frailty ωi, the hazard rate function is of
the following form:

λ(tij|Xij, ωi) = ωiλ0(tij) exp{X>ijβ}, (1)

where λ0(·) is an arbitrary baseline hazard rate, and β is a vector of unknown parameters.
Assume that ωi, i = 1, . . . , B are independent and identically distributed with density
function f (ωi|θ) on the domain W. Denote α = (θ, β, Λ0); we then propose profile MM and
non-profile MM methods to estimate parameters based on the minorization-maximization
(MM) principle.

2.2. An Overview of MM Principle

Before introducing the two proposed methods, let us review the MM principle. As-
sume that Yobs is the observed data, `(α | Yobs) is the log-likelihood function with unknown



Mathematics 2022, 10, 538 3 of 21

parameter α = (α1, . . . , αq)T , and the maximum likelihood estimate of α is α̂ = argmax
`(α | Yobs). The MM principle involves two M steps: One is a minorization step, and
the other is maximization step. In a maximization problem, the first step is minorization,
which aims to construct a minorization/surrogate function for the objective log-likelihood
function `(α | Yobs) to be maximized through a series of inequalities satisfying the following
two conditions: {

Q(α | α(k)) 6 `(α | Yobs),

Q(α(k) | α(k)) = `(α(k) | Yobs),
(2)

where α(k) is the k-th approximation of α̂. Once the minorization function Q(α | α(k)) is
successfully constructed for objective function `(α | Yobs), the following maximization step
is to maximizing the surrogate function Q(α | α(k)) to obtain the (k + 1)-th approximation
of α̂ rather than the objective function, i.e.,

α(k+1) = argmax Q(α | α(k)).

By MM principle, we may have `(α(k+1) | Yobs) > Q(α(k+1) | α(k)) > Q(α(k) | α(k)) =
`(α(k) | Yobs), and the values of the objective function continue to increase until convergence.

2.3. Profile MM Estimation Procedure

For general shared frailty models, we can write the observed log-likelihood function
`(α|Yobs) as follows:

`(α|Yobs) =
B

∑
i=1

log
∫
W

τi(ωi|α)dωi, (3)

where the following is the case.

τi(ωi|α) = f (ωi|θ)
Mi

∏
j=1

{[
λ0(tij)ωi exp(X>ijβ)

]δij exp
[
−Λ0(tij)ωi exp(X>ijβ)

]}
.

Generally, the Laplace transform of the frailty’s distribution is theoretically intractable.
Hence, the explicit form of marginal hazard is not available to us. However, that has not
stopped us from developing the profile MM approach for estimation in general shared
frailty model. Define the following:

vi(ωi|α(k)) =
τi(ωi|α(k))∫

W τi(ωi|α(k))dωi
,

and rewrite the objective function as follows.

`(α|Yobs) =
B

∑
i=1

log
[ ∫

W

τi(ωi|α)
vi(ωi|α(k))

· vi(ωi|α(k))dωi

]
. (4)

By Jensen’s inequality, we have the following:

ϕ

[∫
X

h(x) · g(x)dx
]
>
∫
X

ϕ
[
h(x)

]
· g(x)dx,

where X is a subset of the real line R, ϕ(·) is the concave function, h(·) is an arbitrary real-
valued function defined on X, and g(·) is a density function defined on X. In Equation (4),
vi(ωi|α(k)) is a density function, and choosing h(x) as τi(ωi|α)/vi(ωi|α(k)), we can apply
the above Jensen’s inequality and construct the following surrogate function for `(α|Yobs):

Q1(α|α(k)) = Q11(θ|α(k)) + Q12(β, Λ0|α(k)), (5)
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where the following is the case:

Q11(θ|α(k)) =
B

∑
i=1

∫
W

log[ f (ωi|θ)] · vi(ωi|θ(k), α(k))dωi, (6)

which only consists of parameter θ. Moreover, we have the following:

Q12(β, Λ0|α(k)) =
B

∑
i=1

Mi

∑
j=1

[
δij log(λ0(tij))+δijX>ijβ−A(k)

i Λ0(tij) exp(X>ijβ)
]

, (7)

where A(k)
i =

∫
W ωi · vi(ωi|α(k))dωi, i = 1, . . . , B. The minorizing function Q1(α|α(k))

separates parameters θ and (β, Λ0) into (6) and (7), respectively. In the second M-step, the
updated estimates of θ involve maximizing (6) numerically. Due to the presence of the
nonparametric component Λ0, updating (β, Λ0) is still a big challenge. Following [7], we
apply the profile estimation method to profile out Λ0 in Q12(β, Λ0|α(k)), which results in
the estimate of Λ0 given β.

dΛ̂0(tij) =
δij

∑B
r=1 ∑Mr

s=1 I(trs > tij)A(k)
r exp(X>rsβ)

. (8)

Substituting (8) into Q12(β, Λ0|α(k)), we obtain the following:

Q13(β|α(k))=
B

∑
i=1

Mi

∑
j=1

{
δijX>ijβ−δij log

[ B

∑
r=1

Mr

∑
s=1

I(trs > tij)A(k)
r exp(X>rsβ)

]}
, (9)

which involves β only. In Equation (9), Newton’s method and large matrix inversion
are required to update β in this procedure when there exist a large number of covariates.
Here, we further construct minorizing functions for Q13(β|α(k)) to separate the regression
parameters β1, . . . , βq from each other under the MM principle. We first use the supporting
hyperplane inequality:

− log(x) > − log(x0)−
x− x0

x0

to minorize Q13(β|α(k)); then, we have the following surrogate function:

Q14(β|α(k)) =
B

∑
i=1

Mi

∑
j=1

[
δijX>ijβ−

δij ∑B
r=1 ∑Mr

s=1 I(trs > tij)A(k)
r exp(X>rsβ)

∑B
r=1 ∑Mr

s=1 I(trs > tij)A(k)
r exp(X>rsβ(k))

]
+ c,

where c is a constant not depending on β. We apply Jensen’s inequality to the concave
function − exp(·) in Q14(β|α(k)) by rewriting the following:

X>rsβ =
q

∑
p=1

πprs[π
−1
prsXprs(βp − β

(k)
p ) + X>rsβ(k)],

where πprs = |Xprs|/ ∑
q
p=1 |Xprs|. Finally, the minorizing function for Q14(β|α(k)) is

as follows:

Q15(β1, . . . , βq|α(k)) =̂
q

∑
p=1

Q15p(βp|α(k)), (10)
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where the following is the case.

Q15p(βp|α(k)) =
B

∑
i=1

Mi

∑
j=1

{
δijXpijβp (11)

−
δij ∑B

r=1 ∑Mr
s=1 I(trs > tij)A(k)

r πprs exp
[
π−1

prsXprs(βp − β
(k)
p ) + X>rsβ(k)]

∑B
r=1 ∑Mr

s=1 I(trs > tij)A(k)
r exp(X>rsβ(k))

}
, p = 1, . . . , q.

In general, the structure of minorizing function for the objective log-likelihood function
`(α|Yobs) in (3) is the following:

Qpro(θ, β|α(k)) = Q11(θ|α(k)) +
q

∑
p=1

Q15p(βp|α(k)), (12)

with an explicit form update of dΛ0 by (8). We may observe that the objective function to be
maximized is decomposed into a sum of q + 1 univariate functions from (12) as Q11(θ|α(k))
only consists of one parameter usually. The next maximization step of this MM algorithm
only involves q + 1 separate univariate optimizations and matrix inversion is unnecessary.
Note that the success of the above profile MM algorithm requires the convergence of
two improper integrals such as

∫
W ωi · vi(ωi|α(k))dωi and

∫
W log[ f (ωi|θ)] · vi(ωi|α(k))dωi.

Moreoveer, the convergences of these improper integrals are obvious when we assume the
distribution of random effect comes from an exponential distribution family. The estimation
proceeds by profile MM algorithm are summarized as follows:

Step 1. Given initial values for θ, β, and Λ0;

Step 2. Update θ via (6). Update each βp via (11) for p = 1, . . . , q;

Step 3. Based on the update of β, compute the estimates of Λ0(tij) via (8);

Step 4. Iterate steps 2 and 3 until convergence.

2.4. Non-Profile MM Estimation Procedure

In this subsection, we bypass the profile estimation procedure in previous subsection
and continue to develop new MM procedures for Equation (7) to separate parameters β
and nuisance baseline hazard rate Λ0. Actually, to separate β and Λ0 of (7) is to deal with
the last term −Λ0(tij) exp(X>ijβ). As in [26], we use the following arithmetic-geometric
mean inequality.

−
n

∏
i=1

xai
i > −

n

∑
i=1

ai
||a||1

x||a||1i (13)

Here, xi and ai are non-negative. Choosing x1 = Λ0(tij)/Λ(k)
0 (tij) and x2 = exp(X>ijβ)/

exp(X>ijβ
(k)) in inequality (13), we obtain the following surrogate function for (7):

Q2(β, Λ0|α(k))

=
B

∑
i=1

Mi

∑
j=1

[
δij log(λ0(tij))+δijX>ijβ−

A(k)
i exp(X>ijβ

(k))

2Λ(k)
0 (tij)

Λ0(tij)
2 −

A(k)
i Λ(k)

0 (tij)

2 exp(X>ijβ
(k))

exp(2X>ijβ)
]

,

=̂ Q21(Λ0|α(k)) + Q22(β|α(k)) (14)
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where the following is the case.

Q21(Λ0|α(k)) =
B

∑
i=1

Mi

∑
j=1

[
δij log(λ0(tij))−

A(k)
i exp(X>ijβ

(k))

2Λ(k)
0 (tij)

Λ0(tij)
2
]

, (15)

Q22(β|α(k)) =
B

∑
i=1

Mi

∑
j=1

[
δijX>ijβ−

A(k)
i Λ(k)

0 (tij)

2 exp(X>ijβ
(k))

exp(2X>ijβ)
]

. (16)

In order to obtain the nonparametric estimate of Λ0, the maximization of (15) is
required. For ease of computation, a one-step late skill is applied to the first order derivative
of Equation (15); then, we obtain the estimate of λ0 by the following:

dΛ̂0(tij) =
δij

∑B
r=1 ∑Mr

s=1 I(trs > tij)A(k)
r exp(X>rsβ(k))

, (17)

which is same as (8) in the profile estimation method. To update β, a similar technique
as dealing with Q14(β|α(k)) is used. We apply Jensen’s inequality to the concave function
− exp(·) in Q22(β|α(k)) by rewriting the following:

2X>ijβ =
q

∑
p=1

πpij
[
2π−1

pij Xpij(βp − β
(k)
p ) + 2X>ijβ

(k)],
where πpij = |Xpij|/ ∑

q
p=1 |Xpij|. In the end, the minorizing function for Q22(β|α(k)) is

as follows:

Q23(β1, . . . , βq|α(k)) =̂
q

∑
p=1

Q23p(βp|α(k)), (18)

where the following is obtained:

Q23p(βp|α(k))=
B

∑
i=1

Mi

∑
j=1

{
δijXpijβp −

πpij A
(k)
i Λ(k)

0 (tij) exp
[
2π−1

pij Xpij(βp − β
(k)
p )+2X>ijβ

(k)]
2 exp(X>ijβ

(k))

}
, (19)

for p = 1, . . . , q. As a result, we construct the surrogate function for the objective log-
likelihood function via a non-profile MM principle as follows:

Qnonpro(θ, β|α(k)) = Q11(θ|α(k)) +
q

∑
p=1

Q23p(βp|α(k)), (20)

with explicit form update of dΛ0 by (17). From (20), we can find similar nice features
as Qpro(θ, β|α(k)); that is, Qnonpro(θ, β|α(k)) is a sum of q + 1 univariate functions, which
means that the next maximization (second M) step only involves q + 1 simple univariate
optimizations. It is worth noting that the parameter separated feature in the proposed
profile MM and non-profile MM algorithms will help incoporate with the existing simple
off-the-shelf accelerators well and brings about great effectiveness in computation time, as
discussed in [25]. The estimation proceeds by non-profile MM algorithm are summarized
as follows:

Step 1. Given initial values of θ, β, and Λ0;

Step 2. Update the estimate of θ via (6). Update the estimate of βp based on (19) for
p = 1, . . . , q;
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Step 3. Using the updated estimate of β, compute the estimates of Λ0(tij) via (17);

Step 4. Iterate steps 2 and 3 until convergence.

3. Regularized Estimation Methods via MM Methods

Followed by Section 3, both proposed estimation approaches created nice parameter-
separated surrogate functions to be maximized which may incorporate with regularization
cleverly. In this part, we propose regularized estimation approaches based on MM algo-
rithms in regression analysis under general shared frailty model. Many variable selection
criteria arise as special cases of the general formulation as discussed in [20], where the
penalized likelihood function takes the form

`P(α|Yobs) = `(θ, β, Λ0|Yobs)− N
q

∑
p=1

P(|βp|, λ), (21)

where `(θ, β, Λ0|Yobs) is the log-likelihood function for the shared frailty model, q is the
dimension of β, P(·, λ) is a given nonnegative penalty function, and λ > 0 is a tuning
parameter, which is allowed to use λp in more general cases. This penalty shrinks some
of the coefficients to zero. Under the scope of general frailty topic, the computation of
MLEs is extremely complicated and hard in terms of accuracy as parameters of interests
involve three blocks θ, β, and Λ0, and even more complicated when there exists a large
numbers of coefficients. It is worth mentioning that the proposed profile and non-profile
MM algorithms decomposed the coefficient vector β from the other two blocks θ, and Λ0
and different coefficient parameters are separated from each other. This nice feature of the
proposed profile and non-profile MM algorithms may mesh well with various regulariza-
tion problems in (21) to produce more sparse and accurate estimates. Under profile MM
algorithmic technique in (12), we obtain the corresponding minorization function for (21)
as follows.

Qpro(θ, β|α(k))− N
q

∑
p=1

P(|βp|, λ). (22)

Under the non-profile MM algorithmic technique in (20), the minorization function
for (21) is as follows.

Qnonpro(θ, β|α(k))− N
q

∑
p=1

P(|βp|, λ). (23)

When P(·, λ) is piecewise differentiable, nondecreasing, and concave on (0, ∞) such
as L1, MCP and SCAD penalties [27], explored a connection between the local quadratic
approximation with MM algorithm. The penalty term −P(·, λ) can be minorized by a local
quadratic approximation form as follows:

−P(|βp|, λ) > −P(|β(k)
p |, λ)−

[β2
p − (β

(k)
p )2]P′(|β(k)

p |+, λ)

2|β(k)
p |

=̂ Φ(βp|β(k)
p ), (24)

which is actually a one-step minorizing process. By combining function (24) with (12) or (20),
respectively, we obtain the final surrogate functions for penalized likelihood function (21)
as follows:

QP
pro(θ, β|α(k)) = Qpro(θ, β|α(k))− N

q

∑
p=1

β2
p · P′(|β

(k)
p |+, λ)

2|β(k)
p |

+ c1, (25)
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and the following is obtained.

QP
nonpro(θ, β|α(k)) = Qnonpro(θ, β|α(k))− N

q

∑
p=1

β2
p · P′(|β

(k)
p |+, λ)

2|β(k)
p |

+ c2. (26)

Both Equations (25) and (26) are written as a sum of a series of univariate functions so
that maximizing (25) and (26) will be easier than directly maximizing (21). Moreover, some
simple off-the-shelf accelerators may also be used here to make the optimization problems
more simplier and efficient. Regularized estimation proceeds by (profile/non-profile) MM
algorithms and are summarized as follows:

Step 1. Given initial values of θ, β and Λ0;

Step 2. Update the estimate of θ via (6);

Step 3. For profile MM method, update β by maximizing

q

∑
p=1

Q15p(βp|α(k))− N
q

∑
p=1

β2
p · P′(|β

(k)
p |+, λ)

2|β(k)
p |

.

For non-profile MM method, update β by maximizing

q

∑
p=1

Q23p(βp|α(k))− N
q

∑
p=1

β2
p · P′(|β

(k)
p |+, λ)

2|β(k)
p |

;

Step 4. Using the updated estimate of β in Step 3, compute the estimates of Λ0(tij) via (8)
for profile MM method and via (17) for non-profile MM method, respectively;

Step 5. Iterate steps 2 to 4 until convergence.

Model Selection

From the recent literature, tuning parameter λ may be selected by multiple data driven
model selection criteria, such as Bayesian information criterion BIC ([28]) and generalized
cross-validation GCV ([29]). In this paper, we consider a widely used BIC-type criterion,
defined by the following:

BICλ = −2`(α̂) + Cn(Ŝ + 1) log(N), (27)

to select the tuning parameter λ, where Cn = max{1, log[log(q + 1)]}, q is the dimension
of β, and the degrees of freedom Ŝ are defined as the number of nonzero parameters in β̂.

4. Theoretical Properties

We first consider the convergence properties for the profile and non-profile MM
algorithms of maximizing `(α) and `P(α). As discussed in Sections 3 and 4, Qpro(θ, β|α(k))

and Qnonpro(θ, β|α(k)) are the constructed minorizing functions of `(α) via the profile
and non-profile MM approach, QP

pro(θ, β|α(k)) and QP
nonpro(θ, β|α(k)) are the constructed

minorizing functions of penalized likelihood function `P(α) via the profile and non-profile
MM approach, θ and β are the parameter vectors, and α(k) is its current estimate. In this
paper, we assume that the common component Q11(θ|α(k)) of all minorizing functions is
strictly concave with respect to θ, and the second M step of MM principle is based on the
Newton–Raphson method. As strict concavity holds for all surrogate functions Qpro(·|α(k)),
Qnonpro(·|α(k)), QP

pro(·|α(k)) and QP
nonpro(·|α(k)) by using concave penalties L1, MCP and

SCAD, we denote their unique maximizers by Mpro(α(k)), Mnonpro(α(k)), MP
pro(α

(k)), and
MP

nonpro(α
(k)), respectively. Following Proposition 15.4.3 of Lange [30], we provide the

following convergence properties.
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Proposition 1. Assume the differentiability and coerciveness of−`(α) hold, all stationary points of
−`(α) are isolated and the subsets {α ∈ Ω : `(α) > `(α(k))} of parameter domain Ω are compact.
Then, the profile iteration sequence (θ(k+1), β(k+1)) = Mpro(α(k)) together with Λ(k+1)

0 in (8) and

non-profile sequence (θ(k+1), β(k+1)) = Mnonpro(α(k)) together with Λ(k+1)
0 in (17) converge to

the stationary point of `(α). If the strict concavity of `(α) also hold, then the profile MM sequence
and non-profile MM sequence converge to the same maximum point of `(α).

Proposition 2. Suppose P(·|λ) is piecewise differentiable, nondecreasing and concave on (0, ∞),
continuous at 0 and P′(0+|λ) < ∞. Then, for all βp 6= 0, Φ(βq|β(k)

q ) as defined in (24) minorizes
−P(|βq| |λ) at points ±|βq|. In particular, conditions in construction minorization function hold,

that is, −P(|βq| |λ) > Φ(βq|β(k)
q ) for all βq with equality at βq = β

(k)
q and the ascent property

−P(|β(k+1)
q | |λ) > Φ(β

(k+1)
q |β(k)

q ) > Φ(β
(k)
q |β

(k)
q ) = −P(|β(k)

q | |λ) hold.

Based on Proposition 2, we can easily obtain the following convergence properties of
profile MM and non-profile MM algorithms for maximizing penalized likelihood function
`P(α) defined in (21).

Proposition 3. Assume the differentiability and coerciveness of −`P(α) hold, all stationary points
of −`P(α) are isolated and the subsets {α ∈ Ω : `P(α) > `P(α(k))} of parameter domain Ω are
compact. Then, the profile iteration sequence (θ(k+1), β(k+1)) = MP

pro(α
(k)) together with Λ(k+1)

0

in (8) and non-profile sequence (θ(k+1), β(k+1)) = MP
nonpro(α

(k)) together with Λ(k+1)
0 in (17)

converge to the stationary point of `P(α). If the strict concavity of `P(α) also hold, then the profile
MM sequence and non-profile MM sequence converge to the same maximum point of `P(α).

5. Numerical Examples

Example 1. We independently simulate data from three different frailty models:

λ(t|Xij, ωi) = ωiλ0(t) exp{X>ijβ}, ωi ∼


Log-normal(0, θ), θ = 0.25,

Inverse Gaussian(θ, θ2), θ = 1,

Gamma(1/θ, 1/θ), θ = 2,

with three different sample sizes (B, M) = {(15, 20), (30, 13), (50, 10)}. The true value of regres-
sion vector β is set to be (−2>6,−1>6, 1>6, 2>6, 3>6) with dimension q = 30 and all Xi’s are generated
from independent uniform distribution between 0 and 0.5. The censoring times are generated
from independent uniform distribution to yield censoring proportion at around 15% or 30%. In
this example, we numerically illustrate the efficiency of two proposed profile and non-profile MM
algorithms under three different (Log-normal, Inverse Gaussian, and Gamma) frailty models with
three different sample sizes at two censoring situations. Furthermore, we compare the performance
of the two proposed profile and non-profile MM algorithms with the existing estimation approach by
coxph function of the survival R package under gamma and log-normal frailty models since the coxph
function of the survival R package only allows gamma and log-normal frailty. The computation
time of MM algorithm can be improved by using simple off-the-shelf accelerators ([31,32]); here, we
implement the accelerated profile MM and non-profile MM algorithms with the squared iterative
method (SqS1). We set the stopping criterion of iteration as follows.∣∣∣`(α(k+1)|Yobs)− `(α(k)|Yobs)

∣∣∣∣∣`(α(k)|Yobs)
∣∣+ 1

< 10−6.

Based on 500 replications, the average values of estimated frailty and regression
parameters (MLE), their biases (Bias), their empirical standard deviations (SD), and run
times (T) based on three estimation methods are summarized in Tables 1–6. In general,
with a sample size increase, the biases and empirical standard deviations of almost all
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parameters become smaller. Small sample size (B, M) = (15, 20) always causes obvious
biases for frailty parameters in Log-normal and Inverse Gaussian frailty models because
the number of clusters is too small. Moreover, a larger censoring proportion usually results
in greater empirical standard deviations for almostly all cases. From Tables 1–4, we also
observe that the existing estimation approach using coxph function is the fastest among the
three methods since the survival R package is optimised using the C language. In terms of
estimation accuracy, the non-profile MM algorithm performs the best for both frailty and
regression parameters, almost always exhibiting smallest biases and empirical standard
deviations in all situations. Even in a small sample size such as (B, M) = (15, 20), the
non-profile MM estimates for frailty parameter still perform well, especially for Log-normal
frailty and Gamma frailty models.

Table 1. Simulation results for Log-normal frailty model in Example 1 with different sample sizes at
15% censoring.

Par.
Scenario 1: (B, M) = (15, 20)

Profile MM Approach Non-Profile MM Approach Coxph

T 8.5716 5.7928 0.0586
MLE Bias SD MLE Bias SD MLE Bias SD

θ 0.3438 0.0938 0.3359 0.2925 0.0425 0.3173 0.2955 0.0455 0.3458
β1 −2.2157 −0.2157 0.5034 −2.0969 -0.0969 0.5175 −2.1697 −0.1697 0.5842
β5 −2.1316 −0.1316 0.5725 −2.1392 -0.1392 0.5567 −2.2005 −0.2005 0.5747
β10 −1.0976 −0.0976 0.5523 −1.0863 −0.0863 0.5232 −1.0854 −0.0854 0.5794
β15 1.0720 0.0720 0.5160 1.0126 0.0126 0.5185 1.1232 0.1232 0.5392
β20 2.1871 0.1871 0.5584 2.0966 0.0966 0.5286 2.0560 0.0560 0.5217
β25 3.2619 0.2619 0.5576 3.1412 0.1412 0.5455 3.2396 0.2396 0.6022
β30 3.2156 0.2156 0.5775 3.1507 0.1507 0.5468 3.2781 0.2781 0.5669

Par.
Scenario 2: (B, M) = (30, 13)

Profile MM Approach Non-Profile MM Approach Coxph

T 5.7458 7.5817 0.0893
MLE Bias SD MLE Bias SD MLE Bias SD

θ 0.3222 0.0722 0.3006 0.2520 0.0020 0.1099 0.2813 0.0313 0.1065
β1 −2.1110 −0.1110 0.4399 −2.0930 −0.0930 0.4531 −2.0783 −0.0783 0.4743
β5 −2.1236 −0.1236 0.4634 −2.1208 −0.1208 0.4615 −2.1232 −0.1232 0.4384
β10 −1.0788 −0.0788 0.4491 −1.0528 −0.0528 0.4517 −1.0598 −0.0598 0.4877
β15 1.0507 0.0507 0.4467 0.9944 −0.0056 0.4416 1.0457 0.0457 0.4539
β20 2.0663 0.0663 0.4679 2.0421 0.0421 0.4665 2.1415 0.1415 0.4872
β25 3.1734 0.1734 0.4824 3.0586 0.0586 0.4499 3.2054 0.2054 0.4726
β30 3.1833 0.1833 0.4574 3.0666 0.0666 0.4371 3.1279 0.1279 0.4558

Par.
Scenario 3: (B, M) = (50, 10)

Profile MM Approach Non-Profile MM Approach Coxph

T 6.2193 11.4968 0.1281
MLE Bias SD MLE Bias SD MLE Bias SD

θ 0.2683 0.0183 0.2427 0.2478 −0.0022 0.0862 0.2866 0.0366 0.0884
β1 −2.0630 −0.0630 0.3870 −2.0491 −0.0491 0.3831 −2.0548 −0.0548 0.4021
β5 −2.0668 −0.0668 0.3975 −2.0430 −0.0430 0.3903 −2.0340 −0.0340 0.3716
β10 −1.0286 −0.0286 0.3875 −1.0327 −0.0327 0.3799 −1.0583 −0.0583 0.4058
β15 1.0613 0.0613 0.4001 1.0131 0.0131 0.3915 1.0136 0.0136 0.3867
β20 2.0946 0.0946 0.3984 2.0315 0.0315 0.3853 2.0697 0.0697 0.4497
β25 3.1535 0.1535 0.4104 3.0739 0.0739 0.3973 3.1178 0.1178 0.4147
β30 3.1266 0.1266 0.4187 3.0378 0.0378 0.4088 3.1216 0.1216 0.3875
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Table 2. Simulation results for Log-normal frailty model in Example 1 with different sample sizes at
30% censoring.

Par.
Scenario 1: (B, M) = (15, 20)

Profile MM Approach Non-Profile MM Approach Coxph

T 4.8084 5.7248 0.0541
MLE Bias SD MLE Bias SD MLE Bias SD

θ 0.2712 0.0212 0.1446 0.2491 −0.0009 0.1434 0.3022 0.0522 0.1507
β1 −2.2181 −0.2181 0.6137 −2.1211 −0.1211 0.5712 −2.1928 −0.1928 0.6084
β5 −2.1717 −0.1717 0.6270 −2.1431 −0.1431 0.6230 −2.2133 −0.2133 0.5920
β10 −1.1136 −0.1136 0.6001 −1.0786 −0.0786 0.5881 −1.0936 −0.0936 0.6158
β15 1.0926 0.0926 0.6117 1.0452 0.0452 0.5603 1.0499 0.0499 0.6049
β20 2.2211 0.2211 0.6234 2.0423 0.0423 0.5667 2.2068 0.2068 0.6567
β25 3.2667 0.2667 0.6156 3.1369 0.1369 0.6192 3.2481 0.2481 0.5558
β30 3.2490 0.2490 0.6192 3.1452 0.1452 0.6355 3.2599 0.2599 0.5502

Par.
Scenario 2: (B, M) = (30, 13)

Profile MM Approach Non-Profile MM Approach Coxph

T 5.56726 7.7258 0.0818
MLE Bias SD MLE Bias SD MLE Bias SD

θ 0.3189 0.0689 0.9271 0.2496 −0.0004 0.1150 0.2749 0.0249 0.1077
β1 −2.0826 −0.0826 0.4974 −2.0987 −0.0987 0.4898 −2.0761 −0.0761 0.5023
β5 −2.1135 −0.1135 0.5391 −2.0965 −0.0965 0.4950 −2.0974 −0.0974 0.5200
β10 −1.0764 −0.0764 0.5065 −1.0743 −0.0743 0.5180 −1.0510 −0.0510 0.5055
β15 1.0654 0.0654 0.5137 1.0433 0.0433 0.5028 1.0739 0.0739 0.5766
β20 2.1250 0.1250 0.5033 2.0525 0.0525 0.4933 2.1029 0.1029 0.5137
β25 3.1731 0.1731 0.5236 3.0821 0.0821 0.5105 3.1316 0.1316 0.5783
β30 3.1966 0.1966 0.5207 3.0716 0.0716 0.5034 3.2236 0.2236 0.5268

Par.
Scenario 3: (B, M) = (50, 10)

Profile MM Approach Non-Profile MM Approach Coxph

T 4.7591 8.4607 0.1188
MLE Bias SD MLE Bias SD MLE Bias SD

θ 0.2729 0.0229 0.4236 0.2434 −0.0066 0.0865 0.2792 0.0292 0.0966
β1 −2.0917 −0.0917 0.3814 −2.0714 −0.0714 0.3741 −2.1494 −0.1494 0.4376
β5 −2.0692 −0.0692 0.4076 −2.0495 −0.0495 0.3990 −2.0617 −0.0617 0.4617
β10 −1.0320 −0.0320 0.3822 −1.0341 −0.0341 0.3725 −1.0714 −0.0714 0.4174
β15 1.0606 0.0606 0.3928 1.0163 0.0163 0.3843 1.0991 0.0991 0.3947
β20 2.0530 0.0530 0.3851 1.9865 −0.0135 0.3773 2.0780 0.0780 0.4779
β25 3.1058 0.1058 0.4000 3.0158 0.0158 0.3855 3.1531 0.1531 0.4395
β30 3.1071 0.1071 0.3849 3.0182 0.0182 0.3752 3.1250 0.1250 0.4593
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Table 3. Simulation results for Gamma frailty model in Example 1 with different sample sizes at 15%
censoring.

Par.
Scenario 1: (B, M) = (15, 20)

Profile MM Approach Non-Profile MM Approach Coxph

T 22.3576 18.1613 0.0846
MLE Bias SD MLE Bias SD MLE Bias SD

θ 2.0584 0.0584 0.6494 2.1028 0.1028 0.7066 2.1197 0.1197 0.7023
β1 −2.1343 −0.1343 0.5452 −2.1155 −0.1155 0.4974 −2.1027 −0.1027 0.6415
β5 −2.1700 −0.1700 0.5426 −2.1303 −0.1303 0.4923 −2.1633 −0.1633 0.5354
β10 −1.0561 −0.0561 0.5395 −1.0550 −0.0550 0.5505 −1.0768 −0.0768 0.6086
β15 1.0515 0.0515 0.5749 1.0073 0.0073 0.5046 1.0883 0.0883 0.6006
β20 2.1385 0.1385 0.542 2.1311 0.1311 0.5639 2.1685 0.1685 0.5608
β25 3.1702 0.1702 0.5815 3.1928 0.1928 0.5893 3.2140 0.2140 0.5916
β30 3.2185 0.2185 0.5623 3.1268 0.1268 0.6005 3.2433 0.2433 0.6320

Par.
Scenario 2: (B, M) = (30, 13)

Profile MM Approach Non-Profile MM Approach Coxph

T 23.2786 41.7191 0.1438
MLE Bias SD MLE Bias SD MLE Bias SD

θ 2.0934 0.0934 0.4866 2.0270 0.0270 0.4817 2.151 0.1510 0.6232
β1 −2.1266 −0.1266 0.4648 −2.1027 −0.1027 0.4600 −2.1189 −0.1189 0.5060
β5 −2.1197 −0.1197 0.4763 −2.0886 −0.0886 0.4549 −2.1842 −0.1842 0.4881
β10 −1.0328 −0.0328 0.4703 −1.0685 −0.0685 0.4789 −1.0671 −0.0671 0.4818
β15 1.0604 0.0604 0.4871 1.0212 0.0212 0.4847 1.0956 0.0956 0.4446
β20 2.1313 0.1313 0.4696 2.0185 0.0185 0.4745 2.0961 0.0961 0.4848
β25 3.1788 0.1788 0.4695 3.0747 0.0747 0.4954 3.1749 0.1749 0.4888
β30 3.1934 0.1934 0.5120 3.1287 0.1287 0.4953 3.1908 0.1908 0.5070

Par.
Scenario 3: (B, M) = (50, 10)

Profile MM Approach Non-Profile MM Approach Coxph

T 27.4950 47.8408 0.2415
MLE Bias SD MLE Bias SD MLE Bias SD

θ 2.0792 0.0792 0.4091 2.0268 0.0268 0.3890 2.0905 0.0905 0.4287
β1 −2.0896 −0.0896 0.4017 −2.0466 −0.0466 0.4406 −2.1372 −0.1372 0.4366
β5 −2.0619 −0.0619 0.4060 −2.0388 −0.0388 0.4199 −2.1541 −0.1541 0.463
β10 −1.0431 −0.0431 0.4186 −1.0190 −0.0190 0.4047 −1.0672 −0.0672 0.4016
β15 1.0739 0.0739 0.4190 1.0363 0.0363 0.4025 1.0006 0.0006 0.4269
β20 2.0655 0.0655 0.4141 2.0694 0.0694 0.4272 2.0781 0.0781 0.4213
β25 3.1542 0.1542 0.3919 3.0680 0.0680 0.4461 3.1171 0.1171 0.4331
β30 3.1085 0.1085 0.4201 3.0707 0.0707 0.4800 3.1198 0.1198 0.4200
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Table 4. Simulation results for Gamma frailty model in Example 1 with different sample sizes at 30%
censoring.

Par. Scenario 1: (B, M) = (15, 20)

Profile MM Approach Non-Profile MM Approach Coxph

T 18.1609 27.0720 0.0601
MLE Bias SD MLE Bias SD MLE Bias SD

θ 2.0325 0.0325 0.8620 2.0844 0.0844 0.7522 2.0332 0.0332 0.6807
β1 −1.9628 0.0372 0.8105 −2.2108 −0.2108 0.6094 −2.1984 −0.1984 0.5954
β5 −1.9076 0.0924 0.8051 −2.1330 −0.1330 0.5744 −2.1072 −0.1072 0.6045
β10 −1.0357 −0.0357 0.5701 −1.0732 −0.0732 0.5423 −1.1172 −0.1172 0.5989
β15 0.9478 −0.0522 0.6464 1.0731 0.0731 0.5596 1.0585 0.0585 0.5717
β20 1.9482 −0.0518 0.7783 2.0924 0.0924 0.5450 2.1451 0.1451 0.6499
β25 2.9937 −0.0063 1.0379 3.1667 0.1667 0.6197 3.2788 0.2788 0.5763
β30 2.9867 −0.0133 1.0485 3.2437 0.2437 0.6203 3.2631 0.2631 0.5981

Par. Scenario 2: (B, M) = (30, 13)

Profile MM approach Non-Profile MM Approach Coxph

T 16.7308 30.7202 0.0995
MLE Bias SD MLE Bias SD MLE Bias SD

θ 2.0880 0.0880 0.5207 2.0962 0.0962 0.4792 2.1913 0.1913 0.6610
β1 −2.1346 −0.1346 0.5360 −2.1102 −0.1102 0.4817 −2.1127 −0.1127 0.5501
β5 −2.0743 −0.0743 0.5299 −2.1301 −0.1301 0.5327 −2.0796 −0.0796 0.5362
β10 −1.0846 −0.0846 0.5289 −1.0862 −0.0862 0.5136 −1.0690 −0.0690 0.4962
β15 1.0980 0.0980 0.5242 1.0001 0.0001 0.5169 1.0932 0.0932 0.5306
β20 2.1329 0.1329 0.5216 2.0354 0.0354 0.5278 2.1117 0.1117 0.5432
β25 3.2089 0.2089 0.5183 3.1365 0.1365 0.5155 3.2383 0.2383 0.5587
β30 3.1702 0.1702 0.5345 3.1695 0.1695 0.5495 3.2301 0.2301 0.5380

Par. Scenario 3: (B, M) = (50, 10)

Profile MM Approach Non-Profile MM Approach Coxph

T 16.3097 29.1778 0.1647
MLE Bias SD MLE Bias SD MLE Bias SD

θ 2.0999 0.0999 0.4480 2.0462 0.0462 0.3831 2.0948 0.0948 0.3700
β1 −2.1151 −0.1151 0.4605 −2.0508 −0.0508 0.4187 −2.1324 −0.1324 0.4554
β5 −2.0767 −0.0767 0.4197 −2.0876 −0.0876 0.4615 −2.1001 −0.1001 0.4394
β10 −1.0963 −0.0963 0.4629 −1.0712 −0.0712 0.4393 −1.0513 −0.0513 0.4306
β15 1.0443 0.0443 0.4313 0.9910 −0.0090 0.4234 2.0347 0.0347 0.4476
β20 2.0813 0.0813 0.4775 2.0330 0.0330 0.4630 2.1039 0.1039 0.4538
β25 3.1089 0.1089 0.4848 3.0978 0.0978 0.4660 3.1829 0.1829 0.4484
β30 3.1216 0.1216 0.4805 3.1462 0.1462 0.5005 3.1834 0.1834 0.5308
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Table 5. Simulation results for Inverse Gaussian model in Example 1 with different sample sizes at
15% censoring.

Par. Scenario 1: (B, M) = (15, 20)

Profile MM Approach Non-Profile MM Approach

T 3.0369 7.9534
MLE Bias SD MLE Bias SD

θ 0.7060 −0.2940 0.6920 0.7130 −0.2870 0.6511
β1 −2.1516 −0.1516 0.5664 −2.1002 −0.1002 0.4646
β5 −2.1783 −0.1783 0.5366 −2.1062 −0.1062 0.5173
β10 −1.1028 −0.1028 0.5526 −1.0881 −0.0881 0.4719
β15 1.1284 0.1284 0.5523 0.9661 −0.0339 0.5069
β20 2.2162 0.2162 0.5225 1.9742 −0.0258 0.4936
β25 3.2591 0.2591 0.5269 2.9877 −0.0123 0.5332
β30 3.2139 0.2139 0.5553 3.0247 0.0247 0.5250

Par. Scenario 2: (B, M) = (30, 13)

Profile MM Approach Non-Profile MM Approach

T 5.2872 27.2494
MLE Bias SD MLE Bias SD

θ 0.7537 −0.2463 0.5623 0.9178 −0.0822 0.4438
β1 −2.1515 −0.1515 0.4592 −2.1441 −0.1441 0.4455
β5 −2.1300 −0.1300 0.4646 −2.1146 −0.1146 0.4907
β10 −1.0873 −0.0873 0.4743 −1.0830 −0.0830 0.4316
β15 1.0681 0.0681 0.4755 1.0223 0.0223 0.4445
β20 2.1454 0.1454 0.4600 2.0591 0.0591 0.4625
β25 3.2323 0.2323 0.4972 3.1031 0.1031 0.4807
β30 3.2223 0.2223 0.4698 3.0855 0.0855 0.4907

Par. Scenario 3: (B, M) = (50, 10)

Profile MM Approach Non-Profile MM Approach

T 54.9905 36.7796
MLE Bias SD MLE Bias SD

θ 0.8461 −0.1539 0.4143 0.9724 −0.0276 0.3678
β1 −2.0933 −0.0933 0.4056 −2.0688 −0.0688 0.4135
β5 −2.1509 −0.1509 0.4375 −2.0664 −0.0664 0.4318
β10 −1.0878 −0.0878 0.3992 −1.0790 −0.0790 0.3824
β15 1.0437 0.0437 0.4217 0.9728 −0.0272 0.4111
β20 2.1137 0.1137 0.4077 2.0257 0.0257 0.4005
β25 3.1511 0.1511 0.4311 3.0709 0.0709 0.4129
β30 3.1846 0.1846 0.4137 3.0540 0.0540 0.4219



Mathematics 2022, 10, 538 15 of 21

Table 6. Simulation results for Inverse Gaussian model in Example 1 with different sample sizes at
30% censoring.

Par. Scenario 1: (B, M) = (15, 20)

Profile MM Approach Non-Profile MM Approach

T 9.7444 16.1049
MLE Bias SD MLE Bias SD

θ 0.5343 −0.4657 0.6665 0.7017 −0.2983 0.6431
β1 −2.1693 −0.1693 0.6153 −2.1795 −0.1795 0.6054
β5 −2.2288 −0.2288 0.5688 −2.1677 −0.1677 0.6601
β10 −1.0228 −0.0228 0.5690 −1.1006 −0.1006 0.5843
β15 1.1635 0.1635 0.5542 1.0577 0.0577 0.6157
β20 2.2779 0.2779 0.6479 2.0902 0.0902 0.6168
β25 3.2790 0.2790 0.6760 3.1711 0.1711 0.6672
β30 3.3969 0.3969 0.6867 3.1939 0.1939 0.6412

Par. Scenario 2: (B, M) = (30, 13)

Profile MM Approach Non-Profile MM Approach

T 22.7787 22.0124
MLE Bias SD MLE Bias SD

θ 0.6564 −0.3436 0.5263 1.0203 0.0203 0.5297
β1 −2.1801 −0.1801 0.5395 −2.1915 −0.1915 0.4992
β5 −2.0213 −0.0213 0.4727 −2.1508 −0.1508 0.5142
β10 −1.1390 −0.1390 0.5202 −1.0678 −0.0678 0.5140
β15 1.0824 0.0824 0.5276 0.9845 −0.0155 0.5005
β20 2.1354 0.1354 0.4639 2.0252 0.0252 0.5088
β25 3.1809 0.1809 0.6421 3.1362 0.1362 0.5233
β30 3.2375 0.2375 0.5542 3.0828 0.0828 0.5183

Par. Scenario 3: (B, M) = (50, 10)

Profile MM Approach Non-Profile MM Approach

T 20.9400 32.6620
MLE Bias SD MLE Bias SD

θ 0.8502 −0.1498 0.3856 0.9809 −0.0191 0.3556
β1 −2.1046 −0.1046 0.4252 −2.0688 −0.0688 0.4124
β5 −2.1536 −0.1536 0.4224 −2.1123 −0.1123 0.4065
β10 −1.0597 −0.0597 0.3893 −1.0542 −0.0542 0.3806
β15 1.0692 0.0692 0.3973 1.0067 0.0067 0.3841
β20 2.1129 0.1129 0.4162 2.0184 0.0184 0.4005
β25 3.1770 0.1770 0.4159 3.0489 0.0489 0.4005
β30 3.2102 0.2102 0.4277 3.0832 0.0832 0.4120

Example 2. In this example, we simulated 200 realizations consisting of B = 50 clusters and
M = 6 subjects in each cluster from the frailty model:

λ(t|Xij, ωi) = ωiλ0(t) exp{X>ijβ}, (28)

where the frailty terms are ωi ∼ Gamma(1/θ, 1/θ) with θ = 0.5 for i = 1, . . . , B, β =
(1, 3, 0>46, 2, 4)>, q = 50, λ0(t) = 5. The Xi were marginally standard normal, and the cor-
relation between Xi and Xj is $|i−j| with $ = 0.25, 0.75, respectively. The censoring times were
generated from uniform distribution to yield a censoring proportion around 30%. In this simulation
experiment, the utility of our proposed profile MM and non-profile MM estimation methods for
regularized estimation was illustrated in a sparse high-dimensional regression model (21) with three
different penalties (L1, MCP, and SCAD). The model error (ME) and relative model error (RME),
which is the ratio of the model error of the regularized estimator and that of the ordinary maximum
likelihood estimator, are calculated to evaluate the estimation accuracy. Based on 200 replications,
we report the median of relative model errors (MRME) and the average number of correctly and
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incorrectly identified zero coefficients in Table 7 in which the column labeled “Correct" presents the
average restricted only to the true zero coefficients, while the column labeled “Incorrect" depicts the
average of coefficients erroneously set to 0. From Table 4, we can observe that the proposed profile and
non-profile MM algorithms mesh very well with MCP and SCAD penalties and provide good results
in both parameter estimation and variable selection, especially for MCP penalty. For L1 penalty,
we observe that it meshes well with profile and non-profile MM algorithms under lower correlation
case at $ = 0.25 but tends to yield biased estimates and inaccurate variable selection results when
the correlation between Xi and Xj becomes stronger. Furthermore, we report the average values
of estimated parameters (MLE), their biases (Bias), and their empirical standard deviations (SD)
under MCP and SCAD penalties based on 200 repetition in Table 8. It can be observed that both
profile and non-profile MM methods perform similarly well in varying $ and different penalties,
always showing small biases and empirical standard deviations.

Table 7. The median of relative model errors for gamma frailty model by L1, MCP, and SCAD
penalties with sample size (B, M) = (50, 6) based on 200 realizations in Example 2.

MRME Zeros MRME Zeros

Correct Incorrect Correct Incorrect

Penalty $ = 0.25 $ = 0.75

Profile MM method
L1 0.159 45.775 0 0.163 44.39 0
MCP (γ = 3) 0.091 46 0 0.066 46 0
SCAD (γ = 3.7) 0.143 45.915 0 0.101 45.965 0

Non-profile MM method
L1 0.089 45.74 0 0.188 44.225 0
MCP (γ = 3) 0.051 46 0 0.085 46 0
SCAD (γ = 3.7) 0.077 45.885 0 0.106 45.88 0

Table 8. The average values of estimated parameters (MLE), their biases (Bias), and their empirical
standard deviations (SD) under MCP and SCAD penalties in Example 2.

Penalty Par. Profile MM Approach Non-Profile MM Approach

MLE Bias SD MLE Bias SD

MCP
($ =
0.25)

θ 0.4835 −0.0165 0.1120 0.4820 −0.0180 0.1398
β1 0.9993 −0.0007 0.0950 0.9988 −0.0012 0.1028
β2 3.0090 0.0090 0.1984 2.9856 −0.0144 0.1971
β49 1.9940 −0.0060 0.1513 1.9791 −0.0209 0.1512
β50 3.9697 −0.0303 0.2498 3.9868 −0.0132 0.2566

SCAD
($ =
0.25)

θ 0.4967 −0.0033 0.1267 0.4800 −0.0200 0.1335
β1 1.0133 0.0133 0.0960 0.9864 −0.0136 0.0975
β2 3.0167 0.0167 0.2023 2.9467 −0.0532 0.1644
β49 2.0183 0.0183 0.1417 1.9816 −0.0184 0.1255
β50 4.0315 0.0315 0.2657 3.9300 −0.0700 0.2334

MCP
($ =
0.75)

θ 0.4886 −0.0114 0.1258 0.4842 −0.0158 0.1480
β1 0.9774 −0.0226 0.1331 1.0071 0.0071 0.1369
β2 3.0252 0.0252 0.2020 2.9743 −0.0257 0.2570
β49 2.0083 0.0083 0.1831 1.9857 −0.0143 0.2203
β50 4.0134 0.0134 0.2606 4.0026 0.0026 0.3055

SCAD
($ =
0.75)

θ 0.4869 −0.0131 0.1277 0.4839 −0.0161 0.1341
β1 1.0119 0.0119 0.1364 1.0152 0.0152 0.1560
β2 2.9815 −0.0185 0.2063 3.0035 0.0035 0.2422
β49 2.0012 0.0012 0.2238 1.9984 −0.0016 0.2052
β50 4.0119 0.0119 0.2633 4.0021 0.0021 0.2855
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6. Real Data Analysis

Alzheimer Disease’s (AD) is the most common dementia that causes progressive mem-
ory and other body function losses. According to Alzheimer Association, Alzheimer’s is
the sixth leading cause of death in the United States. Many researches have studied the
development of AD from Mild Cognitive Impairment (MCI). The authors of [33] analyzed
the AUC score of whether MCI will transfer to AD using LASSO penalized logistic regres-
sion. The authors of [34] applied cognitive scores, ApoE genotype, and CSF biomarkers
to predict the transition time from MCI to AD. Moreover, there are research studies such
as [35] that used image data to analyze the transition time to dementia. In this paper, we
will apply clinical data and selected SNP genotypes to conduct feature selection under three
different frailty models (Gamma, Inverse Gaussian, and Log-normal) using SCAD and
MCP penalties. The dataset was obtained from ADNI database (adni.loni.usc.edu). In this
dataset, 267 people were recorded as cognitively normal (CN) during the first visit. Among
these people, 78 of them were diagnosed with MCI before the last visit. Eventually, we
observed 22 people transferred from the MCI stage to dementia. To predict the these two
conversion times, 19 clinical predictors were applied mainly based on the age, marriage
status, education level, and test score wuch as Alzheimer’s Disease Assessment Scale
cognitive subscale (ADAS-Cog) and Functional Activities Questionnaire (FAQ). Other than
these predictors, we also included genotypes of SNP from GWAS such as ApoE-ε4, which
have a relationship with early onset dementia or late-onset dementia; 132 covariates are
selected for model training.

In general, using the same notation from simulation, we have (B, M) = (276, 2).
Individuals are independent, and two events of the same individual are grouped into the
same cluster that share the same frailty. The dataset contains the following information.
For individual (i = 1, 2, · · · , 276) and event (j = 1, 2), tij is minimum value of event time
Yij and censoring time Cij. As shown by Table 9, censoring time Cij in this dataset is the
time difference between the first observation date of certain event (CN or MCI) and last
observation date of this patient. The event time is the state transition time, and Yi1 is the
time difference between the first observation date of this patient in state CN and date of
transition from CN to MCI. If no transition is observed, censoring occurs where δi1 = 0
and ti1 = Ci1, otherwise, δi1 = 1 and ti1 = Yi1. Similarly, Yi2 is the time difference between
the first observation date of this patient in state MCI and the date of transition from MCI
to Dementia. If no transition is observed, δi2 = 0 and ti2 = Ci2, otherwise, δi2 = 1 and
ti2 = Yi2. X>ij = (Xij1, . . . , Xijp) denote the potential covariates (such as SNP genotypes
and clinical predictors) where p = 132. According to data description, it is reasonable to
assume that censoring time Cij is independent of event time Yij. Moreover, the two events
from each individual are considered to be highly associated due to common genetic factors
and/or certain habits. Thus, the frailty model is suitable for analyzing this dataset.

Three frailty models are applied for variable selection using SCAD and MCP penalties.
According to the results presented by Tables 10–12, around 70 covariates were selected
for Gamma Frailty and Log-normal Frailty model, and 27 covariates were selected by an
Inverse Gaussian model. Similar covairates were selected by SCAD or MCP penalty for
both Profile MM and Non-profile MM under the same model, which verifies the result
from simulation study. For selected covariates, the ApoE-ε4 is selected as a negative effect
to the survival time as expected. In addition to ApoE-ε4, single SNPs such as rs2333227 and
rs669 from the MPO and A2M gene are associated with the development of Alzheimer’s
Disease. We can observe similar results from [36]. However, many selected SNPs are not
recognized from other studies, and it needs to be analyzed further whether these SNPs can
help to identify the risk of Alzheimer’s.

We use the model with the lowest BIC score for prediction by constructing prognostic
index in order to see whether the selected covariates can help identify the individual with
low risk or high risk. Let X be a collection of X>ij. The full dataset is divided into 10 parts

(X(k) (k = 1, 2, ..., 10)). Similarly to the cross-validation process, without the part of dataset
X(k), covariates are selected using BIC criteria and the vector of parameters β̂k is estimated
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correspondingly. The risk factor r̂k = X(k) β̂k (k = 1, 2, ..., 10) is calculated using dataset
X(k) without considering the individuals’ Latent variable. Individuals with estimated
risk factors below median are classified into to low risk group, and and individual with
estimated risk above median is classified into the high risk group. The survival plots for
estimated high risk group and low risk group are constructed based on their true survival
times. Figure 1 shows that the selected model has conducted a good estimation for the
transition time from stage CN to stage MCI. Due to the lack of data for the second transition,
their confidence intervals are overlapped. Therefore, the prediction result, especially from
stage CN to stage MCI, has shown good estimation using the corresponding model, and
two risk groups are distinguished by predicted risk levels.

Table 9. Illustration of survival years and censoring date for some patients from the ADNI dataset.

Patient ID
From CN to MCI

First Observation Date Date of Last Date tij δijof State CN Transition to MCI of Observation (yr)

011_S_0002 8 September 2005 26 September 2012 18 October 2017 7.05 1
011_S_0021 24 October 2005 - 27 November 2017 12.10 0
100_S_0035 8 November 2005 8 December 2010 8 December 2010 5.08 1
131_S_0123 7 February 2006 23 February 2012 10 February 2016 6.05 1
127_S_0259 28 March 2006 9 April 2014 22 September 2017 8.04 1

Patient ID
From MCI to Dementia

First Observation Date Date of Last Date tij δijof State MCI Transition to Dementia of Observation (yr)

011_S_0002 26 September 2012 - 18 October 2017 5.06 0
011_S_0021 - - - - -
100_S_0035 8 December 2010 - 8 December 2010 0.00 0
131_S_0123 23 February 2012 12 February 2014 10 February 2016 1.97 1
127_S_0259 9 April 2014 10 April 2015 22 September 2017 1.00 1

Figure 1. Survival curves of the transition times from CN to MCI and from MCI to AD for high-risk
and low risk groups constructed using prognostic index.

Table 10. Training results for Gamma Frailty Model.

Profile MM Non-Profile MM

Penalty BIC No. of Non-Zero β BIC No. of Non-Zero β

MCP 1154.70 70 1154.75 70
SCAD 1150.59 69 1150.82 69
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Table 11. Training results for Inverse Gaussian Model.

Profile MM Non-Profile MM

Penalty BIC No. of Non-Zero β BIC No. of Non-Zero β

MCP 1198.76 27 1198.82 27
SCAD 1203.97 27 1204.50 27

Table 12. Training results for Log-normal Frailty Model.

Profile MM Non-Profile MM

Penalty BIC No. of Non-Zero β BIC No. of Non-Zero β

MCP 1149.10 71 1148.86 72
SCAD 1149.10 71 1148.86 71

7. Discussion

The profile and non-profile MM algorithms are proposed for high-dimension regres-
sion analysis with clustered failure time data where a general frailty is used to model
within-cluster dependence and the penalty such as the SCAD and MCP is used for inducing
sparsity. The proposed methods can separate the high-dimensional minorizing function
into a sum of univariate functions after a sequence of minorization steps. These approaches
avoid matrix inversion and provide a toolkit for developing more efficient algorithms in a
broad range of in statistical optimization problems. Meshing well with sparsity penalties
such as SCAD or MCP, the two regularized MM algorithms are further shown to exhibit
certain numerical advantages in sparse high-dimensional regression analyses. The shared
frailty model only represents a special and relatively simple model among the widely
used frailty models for multivariate survival data. For example, the standard shared frailty
model assumes that all subjects in the same cluster share a common frailty. This assumption
can be relaxed to the correlated frailty terms among subjects in the same cluster. Correlated
frailty models present the limitation that shared frailty models may only be used to fit
positively correlated event times. Furthermore, frailty is assumed to be time-constant.
However, unobserved heterogeneity may also be time dependent, which can be explained
by an unobserved random process that unfolds over time. Based on this idea, several
approaches have been proposed such as diffusion processes modeling or Levy processes
modeling for frailty. As an approach based on birth-death Poisson or simpler, piecewise
constant, frailty models have recently been proposed. It would be worthwhile to extend
the proposed two MM algorithms in these applications. Lastly, spatially correlated survival
data present another important and useful setting where the proposed MM algorithms can
be further extended to accommodate.
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